Three-dimensional fluorescence lifetime tomography.

نویسندگان

  • Anuradha Godavarty
  • Eva M Sevick-Muraca
  • Margaret J Eppstein
چکیده

Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gainmodulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system.

We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in...

متن کامل

In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a to...

متن کامل

Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a compu...

متن کامل

Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning.

We report a novel whole-field three-dimensional fluorescence lifetime imaging microscope that incoporates multispectral imaging to provide five-dimensional (5-D) fluorescence microscopy. This instrument, which can acquire a 5-D data set in less than a minute, is based on potentially compact and inexpensive diode-pumped solid-state laser technology. We demonstrate that spectral discrimination as...

متن کامل

A finite-element-based reconstruction method for 3D fluorescence tomography.

In this paper, we propose a dual-excitation-mode methodology for three-dimensional (3D) fluorescence molecular tomography (FMT). For this modality, an effective reconstruction algorithm is developed to reconstruct fluorescent yield and lifetime using finite element techniques. In the steady state mode, a direct linear relationship is established between measured optical data on the body surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2005